منابع مشابه
Analysis of Empirical MAP and Empirical Partially Bayes: Can They be Alternatives to Variational Bayes?
Variational Bayesian (VB) learning is known to be a promising approximation to Bayesian learning with computational efficiency. However, in some applications, e.g., large-scale collaborative filtering and tensor factorization, VB is still computationally too costly. In such cases, looser approximations such as MAP estimation and partially Bayesian (PB) learning, where a part of the parameters a...
متن کاملEmpirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کاملBayes and empirical Bayes changepoint problems
We generalize the approach of Liu and Lawrence (1999) for multiple changepoint problems where the number of changepoints is unknown. The approach is based on dynamic programming recursion for efficient calculation of the marginal probability of the data with the hidden parameters integrated out. For the estimation of the hyperparameters, we propose to use Monte Carlo EM when training data are a...
متن کاملEmpirical Bayes vs. Fully Bayes Variable Selection
For the problem of variable selection for the normal linear model, fixed penalty selection criteria such as AIC, Cp, BIC and RIC correspond to the posterior modes of a hierarchical Bayes model for various fixed hyperparameter settings. Adaptive selection criteria obtained by empirical Bayes estimation of the hyperparameters have been shown by George and Foster [2000. Calibration and Empirical B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrika
سال: 2014
ISSN: 0006-3444,1464-3510
DOI: 10.1093/biomet/ast067